
Package: rapidsplithalf (via r-universe)
October 17, 2024

Type Package

Title A Fast Permutation-Based Split-Half Reliability Algorithm

Version 0.3

Date 2024-08-14

Description Accurately estimates the reliability of cognitive tasks
using a fast and flexible permutation-based split-half
reliability algorithm that supports stratified splitting while
maintaining equal split sizes. See Kahveci, Bathke, and
Blechert (2022) <doi:10.31234/osf.io/ta59r> for details.

License GPL (>= 2)

BugReports https://github.com/Spiritspeak/rapidsplit/issues/

Depends R(>= 4.0)

Imports Rcpp (>= 1.0.5), doParallel, foreach

Suggests knitr, rmarkdown

LinkingTo Rcpp

RoxygenNote 7.3.2

Encoding UTF-8

VignetteBuilder knitr

Repository https://spiritspeak.r-universe.dev

RemoteUrl https://github.com/spiritspeak/rapidsplit

RemoteRef HEAD

RemoteSha 9e0bf46781ebab23eb159fe224c7da4bda1f39c6

Contents
bootstrapWeights . 2
colAggregators . 3
corByColumns . 4
cormean . 5
correlation-tools . 6

1

https://doi.org/10.31234/osf.io/ta59r
https://github.com/Spiritspeak/rapidsplit/issues/

2 bootstrapWeights

excludeOutliersByMask . 7
foodAAT . 8
generateSplits . 9
maskAggregators . 10
OutlierMaskers . 12
raceIAT . 13
rapidsplit . 14
rapidsplithalf . 18
spearmanBrown . 18
stratifiedItersplits . 19

Index 21

bootstrapWeights Bootstrap Weights

Description

Create a matrix of bootstrap samples expressed as frequency weights

Usage

bootstrapWeights(size, times)

Arguments

size Number of values to bootstrap

times Number of bootstraps

Value

A matrix with bootstrap samples expressed as frequency weights. Each column represents a single
bootstrap iteration and each row represents a case.

Examples

Rapidly compute a bootstrapped median to obtain its standard error
myweights<-bootstrapWeights(size=50, times=100)
meds<-mediansByWeight(x=rnorm(50),weights=myweights)
SE
sd(meds)

colAggregators 3

colAggregators Fast matrix column aggregators

Description

Fast matrix column aggregators

Usage

colMedians(x)

colProds(x)

colSds(x)

colMediansMasked(x, mask)

colMeansMasked(x, mask)

colSdsMasked(x, mask)

Arguments

x A numeric matrix to compute column aggregates of.

mask A logical matrix determining which data points to include in the column-wise
aggregations.

Value

A numeric vector representing values aggregated by column.

See Also

colMeans, mediansByMask, maskAggregators

Examples

x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
colMedians(x)

colProds(x)

colSds(x)

mask<-cbind(rep(c(TRUE,FALSE),4),
rep(c(TRUE,FALSE),each=4))

colMediansMasked(x,mask)

4 corByColumns

colMeansMasked(x,mask)

colSdsMasked(x,mask)

corByColumns Correlate two matrices by column

Description

Correlate each column of 1 matrix with the same column in another matrix

Usage

corByColumns(x, y)

corByColumns_mask(x, y, mask)

Arguments

x, y Matrices whose values to correlate by column.

mask Logical matrix marking which data points to include.

Details

The primary use for these functions is to rapidly compute the correlations between two sets of
split-half scores stored in matrix columns.

Value

A numeric vector of correlations per column.

Examples

m1<-matrix((1:9)+rnorm(9),ncol=3)
m2<-matrix((9:1)+rnorm(9),ncol=3)
corByColumns(m1,m2)

mask<-1-diag(3)
corByColumns_mask(m1,m2,mask)

cormean 5

cormean Compute a minimally biased average of correlation values

Description

This function computes a minimally biased average of correlation values. This is needed because
simple averaging of correlations is negatively biased, and the often used z-transformation method of
averaging correlations is positively biased. The algorithm was developed by Olkin & Pratt (1958).

Usage

cormean(
r,
n,
weights = c("none", "n", "df"),
type = c("OP5", "OP2", "OPK"),
na.rm = FALSE,
incl.trans = FALSE

)

Arguments

r A vector containing correlation values/

n A single value or vector containing sample sizes/

weights Character. How should the correlations be weighted? none leads to no weight-
ing, n weights by sample size, df weights by sample size minus one.

type Character. Determines which averaging algorithm to use, with "OP5" usually
being the most accurate.

na.rm Logical. Should missing values be removed?

incl.trans Logical. Should the transformed correlations be included?

Value

An average correlation.

References

Olkin, I., & Pratt, J. (1958). Unbiased estimation of certain correlation coefficients. The Annals of
Mathematical Statistics, 29. https://doi.org/10.1214/aoms/1177706717

Shieh, G. (2010). Estimation of the simple correlation coefficient. Behavior Research Methods,
42(4), 906-917. https://doi.org/10.3758/BRM.42.4.906

Examples

cormean(c(0,.3,.5),c(30,30,60))

6 correlation-tools

correlation-tools Miscellaneous correlation tools

Description

Helper functions to compute important statistics from correlation coefficients.

Usage

r2z(r)

z2r(z)

r2t(r, n)

t2r(t, n)

r2p(r, n)

rconfint(r, n, alpha = 0.05)

compcorr(r1, r2, n1, n2)

S3 method for class 'compcorr'
print(x, ...)

Arguments

r, r1, r2 Correlation values.

z Z-scores.

n, n1, n2 Sample sizes.

t t-scores.

alpha The significance level to use.

x A compcorr object to print.

... Ignored.

Value

For r2z(), z2r, r2t, t2r, and r2p, a numeric vector with the requested transformation applied.
For rconfint(), a numeric vector with two values representing the lower and upper confidence
intervals of the correlation coefficient. For compcorr(), a compcorr object containing a z and p
value for the requested comparison, which can be printed with print.compcorr().

excludeOutliersByMask 7

Functions

• r2z(): Converts correlation coefficients to z-scores.

• z2r(): Converts z-scores to correlation coefficients.

• r2t(): Converts correlation coefficients to t-scores.

• t2r(): Converts t-scores to correlation coefficients.

• r2p(): Computes the two-sided p-value for a given correlation.

• rconfint(): Computes confidence intervals for one or multiple correlation coefficients.

• compcorr(): Computes the significance of the difference between two correlation coeffi-
cients.

• print(compcorr): Computes the significance of the difference between two correlation co-
efficients.

See Also

cormean

Examples

z <- r2z(.5)
r <- z2r(z)
t<-r2t(r,30)
r<-t2r(t,30)
r2p(r,30)
print(rconfint(r,30))
print(compcorr(.5,.7,20,20))

excludeOutliersByMask Exclude SD-based outliers

Description

Different masks (columns of a logical matrix) are applied to the same input vector, and outliers in
each resulting subvector are marked with FALSE in the mask.

Usage

excludeOutliersByMask(x, mask, sdlim = 3)

Arguments

x Vector to exclude outliers from.

mask A logical matrix determining which data points to include and which not to.

sdlim Standard deviation limit to apply; values beyond are classified as outliers and
masked.

8 foodAAT

Value

An updated mask.

Examples

x<-rnorm(50)
x[1]<-100
x[2]<-50
mask<-matrix(TRUE,ncol=3,nrow=50)
mask[1,2]<-FALSE
mask[2,3]<-FALSE
excludeOutliersByMask(x,mask)

foodAAT Approach-Avoidance Task examining approach bias to different foods

Description

This data originates from an approach-avoidance task examining approach bias towards food. Par-
ticipants responded to the stimulus category (food or object) by pulling or pushing a joystick. In-
structions were flipped from one block to the next.

Usage

data(foodAAT)

Format

An object of class "data.frame".

Details

• subjectid: Participant ID.

• stimid: Stimulus ID.

• is_pull: Whether the trial required an approach response (1) or an avoid response (0).

• is_target: Whether the trial featured a food stimulus (1) or an object stimulus (0).

• error: Whether the response was incorrect (1) or correct (0).

• RT: The response initiation time.

• FullRT: The time from stimulus onset to response completion.

• trialnum: The trial number.

• blocknum: The block number.

• palatability: The participant’s palatability rating for the stimulus (foods only).

• valence: The participant’s valence rating for the stimulus.

• FCQS_2_craving: The participant’s FCQS state food craving score at time of testing.

• FCQS_2_hunger: The participant’s FCQS state hunger score at time of testing.

generateSplits 9

Source

doi:10.1016/j.appet.2018.01.032

References

Lender, A., Meule, A., Rinck, M., Brockmeyer, T., & Blechert, J. (2018). Measurement of food-
related approach–avoidance biases: Larger biases when food stimuli are task relevant. Appetite,
125, 42–47. doi:10.1016/j.appet.2018.01.032

generateSplits A balanced split-half generator

Description

Generates split-half indices that can be stratified by multiple subgroup variables while guaranteeing
near-equal numbers of trials in both halves.

Usage

generateSplits(data, subsetvars, stratvars = NULL, splits, verbose = TRUE)

Arguments

data A dataset to generate split-halves from.

subsetvars Variables identifying subgroups that must be individually split into equally sized
halves, e.g. participant number and experimental condition.

stratvars Variables identifying subgroups that are nested within the subsetvars, and must
be split as fairly as possible, while preserving the equal size of the two halves of
each subset identified by the subsetvars, e.g. stimulus ID.

splits How many splits to generate.

verbose Display progress bar?

Value

A logical matrix in which each row represents a row of the input dataset, and each column repre-
sents a single split.

Examples

data(foodAAT)
mysplits<-generateSplits(data=foodAAT,

subsetvars=c("subjectid","is_pull","is_target"),
stratvars="stimid",
splits=1)

half1<-foodAAT[mysplits[,1],]
half2<-foodAAT[!mysplits[,1],]

https://doi.org/10.1016/j.appet.2018.01.032
https://doi.org/10.1016/j.appet.2018.01.032

10 maskAggregators

maskAggregators Multi-mask/weight based aggregators

Description

Methods to aggregate the same vector with different masks or frequency weights. Useful for fast
bootstrapping or split-half scoring. A single aggregate value of x is computed for each column of
the mask or weight matrix.

Usage

mediansByMask(x, mask)

meansByMask(x, mask)

sdsByMask(x, mask)

mediansByWeight(x, weights)

meansByWeight(x, weights)

sdsByWeight(x, weights)

Arguments

x A vector to aggregate over with different masks or weights.

mask Logical matrix where each column represents a separate vector of masks to ag-
gregate x with. Only values marked TRUE are included in the aggregation.

weights Integer matrix where each column represents frequency weights to weight the
aggregation by.

Value

a vector with each value representing an aggregate of the same single input vector but with different
masks or frequency weights applied.

See Also

colMedians, colAggregators, generateSplits

Examples

Demonstration of mediansByMask()
x<-1:6
mask<-rbind(c(TRUE,FALSE,FALSE),

c(TRUE,FALSE,FALSE),
c(FALSE,TRUE,FALSE),

maskAggregators 11

c(FALSE,TRUE,FALSE),
c(FALSE,FALSE,TRUE),
c(FALSE,FALSE,TRUE))

mediansByMask(x,mask)

Compute split-halves for a single
participant, stratified by stimulus
data(foodAAT)
currdata<-foodAAT[foodAAT$subjectid==3,]
currdata$stratfactor<-

interaction(currdata$is_pull,
currdata$is_target,
currdata$stimid)

currdata<-currdata[order(currdata$stratfactor),]
groupsizes<-

rle(as.character(currdata$stratfactor))$lengths
mysplits<-

stratifiedItersplits(splits=1000,
groupsizes=groupsizes)

Median for half 1
mediansByMask(currdata$RT,mysplits==1)

#How to use meansByMask()
meansByMask(x,mask)
sd(meansByMask(currdata$RT,mysplits==1))

How to use sdsByMask() to compute
mask-based D-scores
meansByMask(currdata$RT,mysplits==1) /

sdsByMask(currdata$RT,mysplits==1)

Compute the bootstrapped
standard error of a median
weights<-

bootstrapWeights(size=nrow(currdata),
times=1000)

bootmeds<-mediansByWeight(currdata$RT,weights)
sd(bootmeds) # bootstrapped standard error

Compute the bootstrapped
standard error of a mean
bootmeans<-meansByWeight(currdata$RT,weights)
sd(bootmeans) # bootstrapped standard error
exact standard error for comparison
sd(currdata$RT)/sqrt(length(currdata$RT))

Use sdsByWeight to compute bootstrapped D-scores
bootsds<-sdsByWeight(currdata$RT,weights)
bootstrapped standard error of D-score
sd(bootmeans/bootsds)

12 OutlierMaskers

OutlierMaskers Exclude SD-based outliers in each matrix column

Description

Generate or update a mask matrix based on outlyingness of values in each column.

Usage

maskOutliers(x, sdlim = 3)

maskOutliersMasked(x, mask, sdlim = 3)

Arguments

x Matrix in which to mark SD-based outliers by column.

sdlim Standard deviation limit to apply; values beyond are classified as outliers and
masked.

mask A logical matrix determining which data points to include and which not to.

Value

A logical matrix with outliers (and previously masked values) marked as FALSE.

Examples

Generate data with outliers
testmat<-matrix(rnorm(100),ncol=2)
testmat[1,]<-100
testmat[2,]<-50

Detect outliers
maskOutliers(testmat)

Generate a mask
testmask<-matrix(TRUE,ncol=2,nrow=50)
testmask[1,1]<-FALSE

Detect outliers with pre-existing mask
maskOutliersMasked(x=testmat,

mask=testmask, sdlim = 3)

raceIAT 13

raceIAT Implicit Association Task examining implicit bias towards White and
Black people

Description

This data originates from the publicly available implicit association test (IAT) on racial prejudice
hosted by Project Implicit. 200 participants were randomly sampled from the full trial-level data
available for participants from 2002 to 2022. We included only those IAT blocks relevant to scoring
(3,4,6,7) and only individuals with full data.

Usage

data(raceIAT)

Format

An object of class "data.frame".

Details

• session_id: The session id, proxy for participant number.

• task_name: Subtype of IAT used.

• block_number: IAT block number.

• block_pairing_definition: Stimulus pairing displayed in block.

• block_trial_number: Trial number within block.

• stimulus: Stimulus name.

• required_response: The response required from the participant.

• latency: Participant’s response latency.

• error: Whether the response was wrong (TRUE).

• trial_number: Experimentwise trial number.

• stimcat: The stimulus category.

• respcat: Category of the required response.

• blocktype: Either practice block or full IAT block.

• congruent: Whether the block was congruent with anti-black bias (TRUE) or not.

• latency2: Response latencies with those for incorrect responses replaced by the block mean
plus a penalty.

Source

OSF.io repository

https://osf.io/y9hiq/

14 rapidsplit

References

Xu, K., Nosek, B., & Greenwald, A. G. (2014). Psychology data from the race implicit asso-
ciation test on the project implicit demo website. Journal of open psychology data, 2(1), e3-e3.
doi:10.5334/jopd.ac

rapidsplit rapidsplit

Description

A very fast algorithm for computing stratified permutation-based split-half reliability.

Usage

rapidsplit(
data,
subjvar,
diffvars = NULL,
stratvars = NULL,
subscorevar = NULL,
aggvar,
splits = 6000,
aggfunc = c("means", "medians"),
errorhandling = list(type = c("none", "fixedpenalty"), errorvar = NULL, fixedpenalty =

600, blockvar = NULL),
standardize = FALSE,
include.scores = TRUE,
verbose = TRUE,
check = TRUE

)

S3 method for class 'rapidsplit'
print(x, ...)

S3 method for class 'rapidsplit'
plot(
x,
type = c("average", "minimum", "maximum", "random", "all"),
show.labels = TRUE,
...

)

rapidsplit.chunks(
data,
subjvar,
diffvars = NULL,

https://doi.org/10.5334/jopd.ac

rapidsplit 15

stratvars = NULL,
subscorevar = NULL,
aggvar,
splits = 6000,
aggfunc = c("means", "medians"),
errorhandling = list(type = c("none", "fixedpenalty"), errorvar = NULL, fixedpenalty =

600, blockvar = NULL),
standardize = FALSE,
include.scores = TRUE,
verbose = TRUE,
check = TRUE,
chunks = 4,
cluster = NULL

)

Arguments

data Dataset, a data.frame.

subjvar Subject ID variable name, a character.

diffvars Names of variables that determine which conditions need to be subtracted from
each other, character.

stratvars Additional variables that the splits should be stratified by; a character.

subscorevar A character variable identifying subgroups within a participant’s data from
which separate scores should be computed. To compute a participant’s final
score, these subscores will be averaged together. A typical use case is the D-
score of the implicit association task.

aggvar Name of variable whose values to aggregate, a character. Examples include
reaction times and error rates.

splits Number of split-halves to average, an integer. It is recommended to use around
5000.

aggfunc The function by which to aggregate the variable defined in aggvar; can be
"means", "medians", or a custom function (not a function name). This cus-
tom function must take a numeric vector and output a single value.

errorhandling A list with 4 named items, to be used to replace error trials with the block mean
of correct responses plus a fixed penalty, as in the IAT D-score. The 4 items are
type which can be set to "none" for no error replacement, or "fixedpenalty"
to replace error trials as described; errorvar requires name of the logical vari-
able indicating an incorrect response (as TRUE); fixedpenalty indicates how
much of a penalty should be added to said block mean; and blockvar indicates
the name of the block variable.

standardize Whether to divide by scores by the subject’s SD; a logical. Regardless of
whether error penalization is utilized, this standardization will be based on the
unpenalized SD of correct and incorrect trials, as in the IAT D-score.

include.scores Include all individual split-half scores?

verbose Display progress bars? Defaults to TRUE.

16 rapidsplit

check Check input for possible problems?

x rapidsplit object to print or plot.

... Ignored.

type Character argument indicating what should be plotted. By default, this plots the
random split whose correlation is closest to the average. However, this can also
plot the random split with the "minimum" or "maximum" split-half correlation,
or any "random" split. "all" splits can also be plotted together in one figure.

show.labels Should participant IDs be shown above their points in the scatterplot? Defaults
to TRUE and is ignored when type is "all".

chunks Number of chunks to divide the splits in, for more memory-efficient computa-
tion, and to divide over multiple cores if requested.

cluster Chunks will be run on separate cores if a cluster is provided, or an integer
specifying the number of cores. Otherwise, if the value is NULL, the chunks are
run sequentially.

Details

The order of operations (with optional steps between brackets) is:

• Splitting

• (Replacing error trials within block within split)

• Computing aggregates per condition (per subscore) per person

• Subtracting conditions from each other

• (Dividing the resulting (sub)score by the SD of the data used to compute that (sub)score)

• (Averaging subscores together into a single score per person)

• Correlating scores from one half with scores from the other half

• Computing the average split-half reliability using cormean()

• Applying the Spearman-Brown formula to the absolute correlation using spearmanBrown(),
and restoring the original sign after

Value

A list containing

• r: the averaged reliability.

• ci: the 95% confidence intervals.

• allcors: a vector with the reliability of each iteration.

• nobs: the number of participants.

• scores: the individual participants scores in each split-half, contained in a list with two ma-
trices (Only included if requested with include.scores).

rapidsplit 17

Note

• This function can use a lot of memory in one go. If you are computing the reliability of a large
dataset or you have little RAM, it may pay off to use the sequential version of this function
instead: rapidsplit.chunks()

• It is currently unclear it is better to pre-process your data before or after splitting it. If you
are computing the IAT D-score, you can therefore use errorhandling and standardize to
perform these two actions after splitting, or you can process your data before splitting and
forgo these two options.

Examples

data(foodAAT)
Reliability of the double difference score:
[RT(push food)-RT(pull food)] - [RT(push object)-RT(pull object)]

frel<-rapidsplit(data=foodAAT,
subjvar="subjectid",
diffvars=c("is_pull","is_target"),
stratvars="stimid",
aggvar="RT",
splits=100)

print(frel)

plot(frel,type="all")

Compute a single random split-half reliability of the error rate
rapidsplit(data=foodAAT,

subjvar="subjectid",
aggvar="error",
splits=1,
aggfunc="means")

Compute the reliability of an IAT D-score
data(raceIAT)
rapidsplit(data=raceIAT,

subjvar="session_id",
diffvars="congruent",
subscorevar="blocktype",
aggvar="latency",
errorhandling=list(type="fixedpenalty",errorvar="error",

fixedpenalty=600,blockvar="block_number"),
splits=100,
standardize=TRUE)

Unstratified reliability of the median RT
rapidsplit.chunks(data=foodAAT,

subjvar="subjectid",
aggvar="RT",

18 spearmanBrown

splits=100,
aggfunc="medians",
chunks=8)

Compute the reliability of Tukey's trimean of the RT
on 2 CPU cores
trimean<-function(x){

sum(quantile(x,c(.25,.5,.75))*c(1,2,1))/4
}
rapidsplit.chunks(data=foodAAT,

subjvar="subjectid",
aggvar="RT",
splits=200,
aggfunc=trimean,
cluster=2)

rapidsplithalf rapidsplithalf package

Description

To learn more about rapidsplithalf, view the introductory vignette: vignette("rapidsplithalf",package="rapidsplithalf")

spearmanBrown Spearman-Brown correction Perform a Spearman-Brown correction
on the provided correlation score.

Description

Spearman-Brown correction Perform a Spearman-Brown correction on the provided correlation
score.

Usage

spearmanBrown(r, ntests = 2, fix.negative = c("mirror", "nullify", "none"))

Arguments

r To-be-corrected correlation coefficient.

ntests An integer indicating how many times larger the full test is, for which the cor-
rected correlation coefficient is being computed.

fix.negative How will negative input values be dealt with?

• "mirror" submits the absolute correlations to the formula and restores the
original sign afterwards.

• "nullify" sets negative correlations to zero.
• "none" leaves them as-is (not recommended).

stratifiedItersplits 19

Details

When ntests=2, the formula will compute what the correlation coefficient would be if the test were
twice as long.

Value

Spearman-Brown corrected correlation coefficients.

Examples

spearmanBrown(.5)

stratifiedItersplits stratifiedItersplits

Description

Generate stratified splits for a single participant

Usage

stratifiedItersplits(splits, groupsizes)

Arguments

splits Number of iterations.

groupsizes An integer vector of how many RTs per group need to be stratified.

Details

This equally splits what can be equally split within groups. Then it randomly splits all the leftovers
to ensure near-equal split sizes. This function is moreso used internally, but you can use it if you
know what you are doing.

Value

A matrix with zeroes and ones. Each column is a random split.

Examples

We will create splits stratified by stimulus for a single participant
data(foodAAT)
currdata<-foodAAT[foodAAT$subjectid==3,]
currdata$stratfactor<-interaction(currdata$is_pull,currdata$is_target,currdata$stimid)
currdata<-currdata[order(currdata$stratfactor),]
groupsizes<-rle(as.character(currdata$stratfactor))$lengths

20 stratifiedItersplits

mysplits<-stratifiedItersplits(splits=1000,groupsizes=groupsizes)

Now the data can be split with the values from any column.
half1<-currdata[mysplits[,1]==1,]
half2<-currdata[mysplits[,1]==0,]

Or the split objects can be used as masks for the aggregation functions in this package
meansByMask(x=currdata$RT,mask=mysplits==1)

Index

∗ datasets
foodAAT, 8
raceIAT, 13

bootstrapWeights, 2

colAggregators, 3, 10
colMeans, 3
colMeansMasked (colAggregators), 3
colMedians, 10
colMedians (colAggregators), 3
colMediansMasked (colAggregators), 3
colProds (colAggregators), 3
colSds (colAggregators), 3
colSdsMasked (colAggregators), 3
compcorr (correlation-tools), 6
corByColumns, 4
corByColumns_mask (corByColumns), 4
cormean, 5, 7
cormean(), 16
correlation-tools, 6

excludeOutliersByMask, 7

foodAAT, 8

generateSplits, 9, 10

maskAggregators, 3, 10
maskOutliers (OutlierMaskers), 12
maskOutliersMasked (OutlierMaskers), 12
meansByMask (maskAggregators), 10
meansByWeight (maskAggregators), 10
mediansByMask, 3
mediansByMask (maskAggregators), 10
mediansByWeight (maskAggregators), 10

OutlierMaskers, 12

plot.rapidsplit (rapidsplit), 14
print.compcorr (correlation-tools), 6

print.rapidsplit (rapidsplit), 14

r2p (correlation-tools), 6
r2t (correlation-tools), 6
r2z (correlation-tools), 6
raceIAT, 13
rapidsplit, 14
rapidsplit.chunks(), 17
rapidsplithalf, 18
rapidsplithalf-package

(rapidsplithalf), 18
rconfint (correlation-tools), 6

sdsByMask (maskAggregators), 10
sdsByWeight (maskAggregators), 10
spearmanBrown, 18
spearmanBrown(), 16
stratifiedItersplits, 19

t2r (correlation-tools), 6

z2r (correlation-tools), 6

21

	bootstrapWeights
	colAggregators
	corByColumns
	cormean
	correlation-tools
	excludeOutliersByMask
	foodAAT
	generateSplits
	maskAggregators
	OutlierMaskers
	raceIAT
	rapidsplit
	rapidsplithalf
	spearmanBrown
	stratifiedItersplits
	Index

